Fast Association Rule Mining Algorithm for Spatial Gene Expression Data
نویسندگان
چکیده
One of the important problems in data mining is discovering association rules from spatial gene expression data where each transaction consists of a set of genes and probe patterns. The most time consuming operation in this association rule discovery process is the computation of the frequency of the occurrences of interesting subset of genes (called candidates) in the database of spatial gene expression data. A fast algorithm has been proposed for generating frequent itemsets without generating candidate itemsets along with strong association rules. The proposed algorithm uses Boolean vector with relational AND operation to discover frequent itemsets. Experimental results shows that combining Boolean Vector and relational AND operation results in quickly discovering of frequent itemsets and association rules as compared to general Apriori algorithm . Keywords-Spatial Gene expression data, Association Rule, Frequent itemsets, Boolean vector, relational AND operation, Similarity Matrix.
منابع مشابه
Interestingness Measure for Mining Spatial Gene Expression Data using Association Rule
The search for interesting association rules is an important topic in knowledge discovery in spatial gene expression databases. The set of admissible rules for the selected support and confidence thresholds can easily be extracted by algorithms based on support and confidence, such as Apriori. However, they may produce a large number of rules, many of them are uninteresting. The challenge in as...
متن کاملExploring the Relationships between Spatial and Demographic Parameters and Urban Water Consumption in Esfahan Using Association Rule Mining
In recent years, Iran has faced serious water scarcity and excessive use of water resources. Therefore, exploring the pattern of urban water consumption and the relationships between geographic and demographic parameters and water usage is an important requirement for effective management of water resources. In this study, association rule mining has been used to analyze the data of municipal w...
متن کاملMining Spatial Gene Expression Data Using Negative Association Rules
Over the years, data mining has attracted most of the attention from the research community. The researchers attempt to develop faster, more scalable algorithms to navigate over the ever increasing volumes of spatial gene expression data in search of meaningful patterns. Association rules are a data mining technique that tries to identify intrinsic patterns in spatial gene expression data. It h...
متن کاملData sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملStrategies of an Efficient Algorithm PARM to Generate Association Rules Mining Technique Based on Spatial Data
In the Association rule mining, originally proposed form market basket data, has potential applications in many areas. Spatial data, such as remote sensed imagery (RSI) data, is one of the promising application areas. Association Rule mining is one of the most popular data mining techniques which can be defined as extracting the interesting correlation and relation among large volume of transac...
متن کامل